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For a graph G and a set Z C V/(G), let F(Z) be defined by the following

procedure.

while |Ng(u) \ Z| =1 for some u € Z do
| Z+ ZU(Ng(u)\ Z);

N —

F(Z)«+ Z;
Definition (AIM group '08)
If F(Z) = V(G), then Z is a zero forcing set of G.

Z(G) =min{|Z|: F(Z) = V(G)}

is the zero forcing number of G.
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Definition
For a graph G, let P(G) be the minimum number of disjoint induced
paths Pi,..., Py in G with V(G) = V(P1)U...U V(Px).

e Z(G) > P(G)

with equality for forests (AIM group) and cacti (Row '11).
@ Both parameters are computationally hard

(Aazami '08, Fallat et al. '16, Le, Le, and Miiller '03).
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Theorem (GPRS '16)

This conjecture is true. J
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Let G be a connected graph of order n and maximum degree A at least 3.

If there is some set Zy of vertices of G such that

A
A

—2
20 < S IF(Z0)] + o,

and F(Zo) induces a subgraph of G without isolated vertices, then

>
N

Z(G)SA_1

n—+ o.
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@ To obtain (ii) of the Theorem of Amos et al. choose
Zo = Ng[u] \ {v}
for some vertex u and v € Ng(u).

@ (ii) of the Theorem of Amos et al. implies (i), because

(A—2)n—|—2< An
A—-1 T A+1

forn>A+1.
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Theorem (GR '16)

If G is a connected graph of order n and maximum degree A at least 3,
then

A—-2
A-1

Z(G) <

n

if and only if G & {KA—H» KA,A7 KA—l,A} U {Gl, G2}, where G1 and G,
are the following two graphs.
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Upper Bounds

Conjecture (GR ‘16)

If G is a connected graph of order n and maximum degree 3, then

Z(G) < %n—i— 2.

1
Z(K3’3):4:§'6—|-2

Theorem (GR '16)

If G is a connected graph of order n, maximum degree 3, and girth at least

5, then
n n
< - - 5
2(6) = 2 Q<Iogn)

13/26
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Theorem (GR '16)
If G is a graph, then

dg(v) =il
< > 2 Y Y {upulJNelv]
uEV(G i=0 IE(NGI.(”)) vel

Proof-:
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dg(u) -1
<2 200 ) [{wulUnel
uEV(G i=0 ’E(NG,-(U)) vel

Proof: Let uy,...,u, be a random linear order of the vertices of G.

20/26




Upper Bounds

Theorem (GR '16)
If G is a graph, then

dg(u) -1
Z6)< > > (-1 Y {urulUNelv]
ueV(G) i=0 (M) vel
Proof: Let uy,...,u, be a random linear order of the vertices of G.

Let Z be the set of those vertices u; such that u; is not the unique
neighbor within {uj, ..., u,} of some vertex u; with j < /.

20/26




Upper Bounds

Theorem (GR '16)
If G is a graph, then

dg(u) -1
Z6)< > > (-1 Y {urulUNelv]
ueV(G) i=0 (M) vel
Proof: Let uy,...,u, be a random linear order of the vertices of G.

Let Z be the set of those vertices u; such that u; is not the unique
neighbor within {uj, ..., u,} of some vertex u; with j < /.

Z is a zero forcing set of G.

20/26




Upper Bounds

Theorem (GR '16)
If G is a graph, then

dg(u) -1
Z6)< > > (-1 Y {urulUNelv]
ueV(G) i=0 (M) vel
Proof: Let uy,...,u, be a random linear order of the vertices of G.

Let Z be the set of those vertices u; such that u; is not the unique
neighbor within {uj, ..., u,} of some vertex u; with j < /.

Z is a zero forcing set of G. Z(G) < E[|Z]].

20/26




Upper Bounds

Theorem (GR '16)
If G is a graph, then

dg(u) -1
Z6)< > > (-1 Y {urulUNelv]
ueV(G) i=0 (M) vel
Proof: Let uy,...,u, be a random linear order of the vertices of G.

Let Z be the set of those vertices u; such that u; is not the unique
neighbor within {uj, ..., u,} of some vertex u; with j < /.

Z is a zero forcing set of G. Z(G) < E[|Z]]. Inclusion-exclusion.

20/26




Upper Bounds

Theorem (GR '16)
If G is a graph, then

dg(u) -1
Z6)< > > (-1 Y {urulUNelv]
ueV(G) i=0 (M) vel
Proof: Let uy,...,u, be a random linear order of the vertices of G.

Let Z be the set of those vertices u; such that u; is not the unique
neighbor within {uj, ..., u,} of some vertex u; with j < /.

Z is a zero forcing set of G. Z(G) < E[|Z]]. Inclusion-exclusion. O

20/26




Upper Bounds

Corollary (GR ‘16)
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If G is a r-regular graph of order n and girth at least 5, then

20« (T(1-727)) = (1- %) e (%))

1 1 1
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Theorem (AIM group, Aazami '08)
If G is a graph, then Z(G) > pw(G) > tw(G) > 6(G).

Theorem (Kenter and Davila ‘14)

Let G be a graph of minimum degree § and girth g.
(i) If6 >3 and g > 4, then Z(G) > § + 1.
(i) If6 > 2 and g > 5, then Z(G) > 26 — 2.

Conjecture (Kenter and Davila ‘14)
If§ > 2 and g > 3, then

Z(G) > (g —2)(6 —2) +2.
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Lower Bounds

For g > 7 and 0 > ¢, the conjecture follows using
e Z(G) > tw(G) and
@ a Moore-type lower bound on tw(G)
(Chandrana and Subramanian ‘05).
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Lower Bounds

For g > 7 and 0 > ¢, the conjecture follows using
e Z(G) > tw(G) and

@ a Moore-type lower bound on tw(G)
(Chandrana and Subramanian ‘05).

Theorem (GR '16)
The conjecture holds for g € {4,5,6}.
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Hereditary Equality with P(G)

Recall that Z(G) > P(G) with equality for forests and cacti,
which form hereditary classes of graphs.

ZP ={G: Z(H) = P(H) for every induced subgraph H of G}

©(2,3,4)

Folklore
A graph is a cactus if and only if it is F-free for

F ={Ka} U{O(l1,05,03) : £1,03,03 € N and {2, {3 > 2}.
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Hereditary Equality with P(G)

Theorem (GPRS '16)

If G is a graph such that every cycle of G is induced, then the following
statements are equivalent.

(i) Ge ZP.
(i) G is a cactus.
(iii) G is F-free.
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The end
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The end

Thank you for your attention!
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