Dieter Rautenbach

Universität Ulm

Dieter Rautenbach

Universität Ulm

Joint work with M. Gentner, L.D. Penso, and U.S. Souza

Let
$$\mathcal{S}(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}.$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

 $\{ij : 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$
$$A = \begin{pmatrix} 1 & 2 & 0 & 2\\ 2 & 6 & 3 & 2\\ 0 & 3 & 0 & 0\\ 2 & 2 & 0 & 1 \end{pmatrix}$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

•

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}$$
$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix} \qquad \qquad G(A) =$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix} \qquad \qquad \begin{array}{c} 1 & \bullet & \bullet^2 \\ G(A) = & \bullet \\ \bullet & \bullet \\ 4 & \bullet & 3 \end{array}$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix} \qquad \qquad G(A) = \begin{array}{c} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

$$G(A) = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 3 & 3 \end{bmatrix}$$

$$\mathcal{S}(G) = \{A \in \mathcal{S}(n) : G(A) = G\}$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

$$G(A) = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 3 & 3 \end{bmatrix}$$

$$\mathcal{S}(G) = \{A \in \mathcal{S}(n) : G(A) = G\} \text{ and}$$
$$M(G) = \max\{n - \operatorname{rg}(A) : A \in \mathcal{S}(G)\}$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

$$G(A) = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 3 & 3 \end{bmatrix}$$

$$S(G) = \{A \in S(n) : G(A) = G\} \text{ and}$$
$$M(G) = \max\{n - \operatorname{rg}(A) : A \in S(G)\}$$
$$\leq ???$$

Let $S(n) = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$. For $A \in S(n)$, let G(A) be the graph with vertex set $\{1, 2, ..., n\}$ and edge set

$$\{ij: 1 \le i < j \le n \text{ and } a_{i,j} \ne 0\}.$$

$$A = \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 6 & 3 & 2 \\ 0 & 3 & 0 & 0 \\ 2 & 2 & 0 & 1 \end{pmatrix}$$

$$G(A) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 3 \end{bmatrix}$$

$$S(G) = \{A \in S(n) : G(A) = G\} \text{ and}$$
$$M(G) = \max\{n - \operatorname{rg}(A) : A \in S(G)\}$$
$$\leq ??? \quad (\rightsquigarrow \text{ zero forcing})$$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$ Z

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$ $Z \bullet$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$ $Z \qquad \bullet$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$ $Z \longrightarrow \bullet$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while $|N_G(u) \setminus Z| = 1$ for some $u \in Z$ do $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$ end $\mathcal{F}(Z) \leftarrow Z;$ $Z \longrightarrow \bullet$

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while
$$|N_G(u) \setminus Z| = 1$$
 for some $u \in Z$ do
 $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$
end
 $\mathcal{F}(Z) \leftarrow Z;$
 $Z \longrightarrow \bullet$

Definition (AIM group '08)

If $\mathcal{F}(Z) = V(G)$, then Z is a zero forcing set of G.

For a graph G and a set $Z \subseteq V(G)$, let $\mathcal{F}(Z)$ be defined by the following procedure.

while
$$|N_G(u) \setminus Z| = 1$$
 for some $u \in Z$ do
 $| Z \leftarrow Z \cup (N_G(u) \setminus Z);$
end
 $\mathcal{F}(Z) \leftarrow Z;$
 $Z \longrightarrow \bullet$

Definition (AIM group '08)

If $\mathcal{F}(Z) = V(G)$, then Z is a zero forcing set of G.

$$Z(G) = \min\{|Z| : \mathcal{F}(Z) = V(G)\}$$

is the zero forcing number of G.

AIM Minimum Rank - Special Graphs Work Group

Barioli, Barrett, Butler, Cioaba, Cvetkovic, Fallat, Godsil, Haemers, Hogben, Mikkelson, Narayan, Pryporova, Sciriha, So, Stevanovic, van der Holst, Meulen, Wehe

Theorem (AIM group '08)

Theorem (AIM group '08)

Let Z be a zero forcing set of a graph G.

Theorem (AIM group '08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$.

Theorem (AIM group '08)

Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_{\mu} = 0$ for $\mu \in Z$, then x = 0.

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$,

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

0 = (Ax)

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u$$

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w} x_w$$

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w} x_w = a_{u,v} x_v$$

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w} x_w = a_{u,v} x_v$$

and hence $x_v = 0$.
Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0 = (Ax)_u = \sum_{w \in V(G)} a_{u,w} x_w = a_{u,v} x_v,$$

and hence $x_v = 0$. (ii) Suppose n - rg(A) > |Z|.

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$,

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U)$

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \le Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$ > |Z| + (n - |Z|) - n

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \le Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$ > |Z| + (n - |Z|) - n = 0,

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$ > |Z| + (n - |Z|) - n = 0,

contradicting (i).

Theorem (AIM group '08) Let Z be a zero forcing set of a graph G. Let $A \in S(G)$ and let $x \in ker(A)$. (i) If $x_u = 0$ for $u \in Z$, then x = 0. (ii) $M(G) \leq Z(G)$.

Proof: (i) If $u \in Z$ is such that $N_G(u) \setminus Z = \{v\}$, then

$$0=(Ax)_u=\sum_{w\in V(G)}a_{u,w}x_w=a_{u,v}x_v,$$

and hence $x_v = 0$. (ii) Suppose $n - \operatorname{rg}(A) > |Z|$. For $U = \{x \in \mathbb{R}^n : x_u = 0 \text{ for } u \in Z\}$, $\dim(\ker(A) \cap U) = \dim(\ker(A)) + \dim(U) - \dim(\ker(A) + U)$ > |Z| + (n - |Z|) - n = 0,

contradicting (i). \Box

Definition

For a graph G, let P(G) be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

Definition

For a graph G, let P(G) be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

 Z(G) ≥ P(G) with equality for forests (AIM group) and cacti (Row '11).

Definition

For a graph G, let P(G) be the minimum number of disjoint induced paths P_1, \ldots, P_k in G with $V(G) = V(P_1) \cup \ldots \cup V(P_k)$.

Z(G) ≥ P(G) with equality for forests (AIM group) and cacti (Row '11).
Both parameters are computationally hard (Aazami '08, Fallat et al. '16, Le, Le, and Müller '03).

Theorem (Amos, Caro, Davila, and Pepper '15)

Let G be a graph of order n, maximum degree Δ , and minimum degree at least 1.

(i)
$$Z(G) \leq \frac{\Delta n}{\Delta + 1}$$
.

(ii) If G is connected and $\Delta \ge 2$, then $Z(G) \le \frac{(\Delta-2)n+2}{\Delta-1}$.

Theorem (Amos, Caro, Davila, and Pepper '15)

Let G be a graph of order n, maximum degree Δ , and minimum degree at least 1.

(i) $Z(G) \leq \frac{\Delta n}{\Delta + 1}$. (ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq \frac{(\Delta - 2)n + 2}{\Delta - 1}$.

Conjecture (Amos, Caro, Davila, and Pepper '15) The only extremal graphs for (ii) are C_n , K_n , and $K_{\Delta,\Delta}$.

Theorem (Amos, Caro, Davila, and Pepper '15)

Let G be a graph of order n, maximum degree Δ , and minimum degree at least 1.

(i) $Z(G) \leq \frac{\Delta n}{\Delta + 1}$. (ii) If G is connected and $\Delta \geq 2$, then $Z(G) \leq \frac{(\Delta - 2)n + 2}{\Delta - 1}$.

Conjecture (Amos, Caro, Davila, and Pepper '15) The only extremal graphs for (ii) are C_n , K_n , and $K_{\Delta,\Delta}$.

Theorem (GPRS '16)

This conjecture is true.

Lemma (GR '16)

Let G be a connected graph of order n and maximum degree Δ at least 3.

Lemma (GR '16)

Let G be a connected graph of order n and maximum degree Δ at least 3. If there is some set Z₀ of vertices of G such that

$$|Z_0| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_0)| + lpha,$$

and $\mathcal{F}(Z_0)$ induces a subgraph of G without isolated vertices,

Lemma (GR '16)

Let G be a connected graph of order n and maximum degree Δ at least 3. If there is some set Z₀ of vertices of G such that

$$|Z_0| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_0)| + lpha,$$

and $\mathcal{F}(Z_0)$ induces a subgraph of G without isolated vertices, then

$$Z(G) \leq \frac{\Delta - 2}{\Delta - 1}n + \alpha$$

Upper Bounds Proof:
Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G).$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that $\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i)$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

$$\emptyset \neq N_G(u) \setminus \mathcal{F}(Z_i) = \{v\} \cup N.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq rac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_i)| + lpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$,

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \ge |\mathcal{F}(Z_i)| + |N| + 1$, and

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \ge |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \le \Delta - 2$,

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \ge |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \le \Delta - 2$, which implies

$$|Z_{i+1}| \leq \frac{\Delta-2}{\Delta-1} |\mathcal{F}(Z_{i+1})| + \alpha.$$

П

Proof: For some $i \ge 0$, let Z_i be such that

$$|Z_i| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_i)| + \alpha.$$

 $\mathcal{F}(Z_i) \neq V(G)$. Let $u \in \mathcal{F}(Z_i)$ be such that

If $Z_{i+1} = Z_i \cup N$, then $|Z_{i+1}| = |Z_i| + |N|$, $|\mathcal{F}(Z_{i+1})| \ge |\mathcal{F}(Z_i)| + |N| + 1$, and $|N| \le \Delta - 2$, which implies

$$|Z_{i+1}| \leq \frac{\Delta - 2}{\Delta - 1} |\mathcal{F}(Z_{i+1})| + \alpha.$$

• To obtain (ii) of the Theorem of Amos et al. choose

$$Z_0 = N_G[u] \setminus \{v\}$$

for some vertex u and $v \in N_G(u)$.

• To obtain (ii) of the Theorem of Amos et al. choose

$$Z_0 = N_G[u] \setminus \{v\}$$

for some vertex u and $v \in N_G(u)$.

• (ii) of the Theorem of Amos et al. implies (i), because

$$\frac{(\Delta-2)n+2}{\Delta-1} \leq \frac{\Delta n}{\Delta+1}$$

for $n \geq \Delta + 1$.

Theorem (GR '16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

$$Z(G) \leq rac{\Delta-2}{\Delta-1}n$$

Theorem (GR '16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

$$Z(G) \leq rac{\Delta-2}{\Delta-1}n$$

if and only if $G \notin \{K_{\Delta+1}, K_{\Delta,\Delta}, K_{\Delta-1,\Delta}\}$

Theorem (GR '16)

If G is a connected graph of order n and maximum degree Δ at least 3, then

$$Z(G) \leq rac{\Delta-2}{\Delta-1}n$$

if and only if $G \notin \{K_{\Delta+1}, K_{\Delta,\Delta}, K_{\Delta-1,\Delta}\} \cup \{G_1, G_2\}$, where G_1 and G_2 are the following two graphs.

Proof (for $\Delta = 3$ and $g \ge 5$):

Proof (for $\Delta = 3$ *and* $g \ge 5$): We need to find a set Z_0 with

 $|\mathcal{F}(Z_0)| \geq 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

 $\delta(G) \geq 2.$

 $\#\bigcirc \leq \#\square$

Proof (for $\Delta = 3$ and $g \ge 5$): We need to find a set Z_0 with $|\mathcal{F}(Z_0)| \ge 2|Z_0|.$

 $\delta(G) \geq 2.$

Π

 $\#\bigcirc \leq \#\square$

Conjecture (GR '16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G)\leq \frac{1}{3}n+2.$$

Conjecture (GR '16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G)\leq \frac{1}{3}n+2.$$

$$Z(K_{3,3}) = 4 = \frac{1}{3} \cdot 6 + 2$$

Conjecture (GR '16)

If G is a connected graph of order n and maximum degree 3, then

$$Z(G)\leq \frac{1}{3}n+2.$$

$$Z(K_{3,3}) = 4 = \frac{1}{3} \cdot 6 + 2$$

Theorem (GR '16)

If G is a connected graph of order n, maximum degree 3, and girth at least 5, then

$$Z(G) \leq \frac{n}{2} - \Omega\left(\frac{n}{\log n}\right).$$

Proof (sketch):

 $\#\bigcirc<\#\square$

Proof (sketch):

 $\#\bigcirc<\#\square$

Proof (sketch):

 $\#\bigcirc<\#\square$

Proof (sketch):

 $\#\bigcirc<\#\square$

Proof (sketch):

 $\#\bigcirc<\#\square$

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then

 $\dots G$ has more than $2^{\log_2(n)}$ vertices.

Proof (sketch): If no such subgraph of order $O(\log n)$ exists, then

... G has more than $2^{\log_2(n)}$ vertices. \Box

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof:

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}.$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with j < i.

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with j < i.

Z is a zero forcing set of G.

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with j < i.

Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$.

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with j < i.

Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$. Inclusion-exclusion.

Theorem (GR '16)

If G is a graph, then

$$Z(G) \leq \sum_{u \in V(G)} \sum_{i=0}^{d_G(u)} (-1)^i \sum_{I \in \binom{N_G(u)}{i}} \left| \{u\} \cup \bigcup_{v \in I} N_G[v] \right|^{-1}$$

Proof: Let u_1, \ldots, u_n be a random linear order of the vertices of G.

Let Z be the set of those vertices u_i such that u_i is not the unique neighbor within $\{u_i, \ldots, u_n\}$ of some vertex u_j with j < i.

Z is a zero forcing set of G. $Z(G) \leq \mathbb{E}[|Z|]$. Inclusion-exclusion. \Box

Corollary (GR '16)

If G is a r-regular graph of order n and girth at least 5, then

$$Z(G) \leq \left(\prod_{i=1}^r \left(1 - \frac{1}{ri+1}\right)\right) n$$

Corollary (GR '16)

If G is a r-regular graph of order n and girth at least 5, then

$$Z(G) \leq \left(\prod_{i=1}^r \left(1 - \frac{1}{ri+1}\right)\right) n = \left(1 - \frac{H_r}{r}\right) n + O\left(\left(\frac{H_r}{r}\right)^2\right) n.$$

$$H_r = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{r} \sim \ln r$$

Theorem (AIM group)

If G is a graph, then $Z(G) \ge \delta(G)$.

Theorem (AIM group)

If G is a graph, then $Z(G) \ge tw(G) \ge \delta(G)$.

Theorem (AIM group, Aazami '08) If G is a graph, then $Z(G) \ge pw(G) \ge tw(G) \ge \delta(G)$.

Theorem (AIM group, Aazami '08) If G is a graph, then $Z(G) \ge pw(G) \ge tw(G) \ge \delta(G)$.

Theorem (Kenter and Davila '14)

Let G be a graph of minimum degree δ and girth g.

Theorem (AIM group, Aazami '08) If G is a graph, then $Z(G) \ge pw(G) \ge tw(G) \ge \delta(G)$.

Theorem (AIM group, Aazami '08) If G is a graph, then $Z(G) \ge pw(G) \ge tw(G) \ge \delta(G)$.

Theorem (Kenter and Davila '14) Let G be a graph of minimum degree δ and girth g. (i) If $\delta \ge 3$ and $g \ge 4$, then $Z(G) \ge \delta + 1$. (ii) If $\delta \ge 2$ and $g \ge 5$, then $Z(G) \ge 2\delta - 2$.

Conjecture (Kenter and Davila '14)

If $\delta \geq 2$ and $g \geq 3$, then

$$Z(G) \geq (g-2)(\delta-2)+2.$$

For $g\geq 7$ and $\delta\geq \delta_g$, the conjecture follows using

• $Z(G) \ge tw(G)$ and

 a Moore-type lower bound on tw(G) (Chandrana and Subramanian '05).
Lower Bounds

For $g \geq 7$ and $\delta \geq \delta_g$, the conjecture follows using

• $Z(G) \ge tw(G)$ and

 a Moore-type lower bound on tw(G) (Chandrana and Subramanian '05).

Theorem (GR '16)

The conjecture holds for $g \in \{4, 5, 6\}$.

Recall that $Z(G) \ge P(G)$ with equality for forests and cacti

Recall that $Z(G) \ge P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

Recall that $Z(G) \ge P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

 $\mathcal{ZP} = \{G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G\}$

Recall that $Z(G) \ge P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

 $\mathcal{ZP} = \{G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G\}$

Recall that $Z(G) \ge P(G)$ with equality for forests and cacti, which form hereditary classes of graphs.

 $\mathcal{ZP} = \{G : Z(H) = P(H) \text{ for every induced subgraph } H \text{ of } G\}$

Folklore

A graph is a cactus if and only if it is $\mathcal{F}\text{-}\mathsf{free}$ for

 $\mathcal{F} = \{K_4\} \cup \{\Theta(\ell_1, \ell_2, \ell_3) : \ell_1, \ell_2, \ell_3 \in \mathbb{N} \text{ and } \ell_2, \ell_3 \geq 2\}.$

Theorem (GPRS '16)

If G is a graph such that every cycle of G is induced, then the following statements are equivalent.

(i) G ∈ ZP.
(ii) G is a cactus.
(iii) G is F-free.

The end

The end

Thank you for your attention!