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Graphs and Matrices

Let S(n) =
{
A ∈ Rn×n : AT = A

}
.

For A ∈ S(n), let G (A) be the graph with vertex set {1, 2, . . . , n} and
edge set

{ij : 1 ≤ i < j ≤ n and ai ,j 6= 0}.

A =


1 2 0 2
2 6 3 2
0 3 0 0
2 2 0 1

 G (A) = u u
uu1 2

34
�
�
�

Let

S(G ) = {A ∈ S(n) : G (A) = G} and

M(G ) = max {n − rg(A) : A ∈ S(G )}

≤ ??? (; zero forcing)
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Zero Forcing

For a graph G and a set Z ⊆ V (G ), let F(Z ) be defined by the following
procedure.

while |NG (u) \ Z | = 1 for some u ∈ Z do
Z ← Z ∪ (NG (u) \ Z );

end
F(Z )← Z ;

Z t tb
bb

"
""

'
&

$
%

Definition (AIM group ‘08)

If F(Z ) = V (G ), then Z is a zero forcing set of G .

Z (G ) = min{|Z | : F(Z ) = V (G )}

is the zero forcing number of G .
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Zero Forcing

AIM Minimum Rank - Special Graphs Work Group

Barioli, Barrett, Butler, Cioaba, Cvetkovic, Fallat, Godsil,
Haemers, Hogben, Mikkelson, Narayan, Pryporova, Sciriha, So,
Stevanovic, van der Holst, Meulen, Wehe
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Zero Forcing

Theorem (AIM group ‘08)

Let Z be a zero forcing set of a graph G .
Let A ∈ S(G ) and let x ∈ ker(A).

(i) If xu = 0 for u ∈ Z , then x = 0.

(ii) M(G ) ≤ Z (G ).

Proof: (i) If u ∈ Z is such that NG (u) \ Z = {v}, then

0 =

(

Ax

)

u =
∑

w∈V (G)

au,wxw = au,vxv ,

and hence xv = 0.
(ii) Suppose n − rg(A) > |Z |. For U = {x ∈ Rn : xu = 0 for u ∈ Z},

dim(ker(A) ∩ U) = dim(ker(A)) + dim(U)− dim(ker(A) + U)

> |Z |+ (n − |Z |)− n = 0,

contradicting (i).2
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Definition

For a graph G , let P(G ) be the minimum number of disjoint induced
paths P1, . . . ,Pk in G with V (G ) = V (P1) ∪ . . . ∪ V (Pk).

Z (G ) ≥ P(G )
with equality for forests (AIM group) and cacti (Row ‘11).

Both parameters are computationally hard
(Aazami ’08, Fallat et al. ’16, Le, Le, and Müller ’03).
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Upper Bounds

Theorem (Amos, Caro, Davila, and Pepper ‘15)

Let G be a graph of order n, maximum degree ∆, and minimum degree at
least 1.

(i) Z (G ) ≤ ∆n
∆+1 .

(ii) If G is connected and ∆ ≥ 2, then Z (G ) ≤ (∆−2)n+2
∆−1 .

Conjecture (Amos, Caro, Davila, and Pepper ‘15)

The only extremal graphs for (ii) are Cn, Kn, and K∆,∆.

Theorem (GPRS ‘16)

This conjecture is true.
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Upper Bounds

Lemma (GR ‘16)

Let G be a connected graph of order n and maximum degree ∆ at least 3.
If there is some set Z0 of vertices of G such that

|Z0| ≤
∆− 2

∆− 1
|F(Z0)|+ α,

and F(Z0) induces a subgraph of G without isolated vertices, then

Z (G ) ≤ ∆− 2

∆− 1
n + α.
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Upper Bounds
Proof:

For some i ≥ 0, let Zi be such that

|Zi | ≤
∆− 2

∆− 1
|F(Zi )|+ α.

F(Zi ) 6= V (G ). Let u ∈ F(Zi ) be such that

∅ 6= NG (u) \ F(Zi ) = {v} ∪ N.

�
�
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�rr
����

HHHH

rrr
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�
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�

If Zi+1 = Zi ∪ N, then |Zi+1| = |Zi |+ |N|, |F(Zi+1)| ≥ |F(Zi )|+ |N|+ 1,
and |N| ≤ ∆− 2, which implies

|Zi+1| ≤
∆− 2

∆− 1
|F(Zi+1)|+ α.

2
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Upper Bounds

To obtain (ii) of the Theorem of Amos et al. choose

Z0 = NG [u] \ {v}

for some vertex u and v ∈ NG (u).

(ii) of the Theorem of Amos et al. implies (i), because

(∆− 2)n + 2

∆− 1
≤ ∆n

∆ + 1

for n ≥ ∆ + 1.
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Upper Bounds

Theorem (GR ‘16)

If G is a connected graph of order n and maximum degree ∆ at least 3,
then

Z (G ) ≤ ∆− 2

∆− 1
n

if and only if G 6∈ {K∆+1,K∆,∆,K∆−1,∆} ∪ {G1,G2}, where G1 and G2

are the following two graphs.
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Upper Bounds

Proof (for ∆ = 3 and g ≥ 5):

We need to find a set Z0 with

|F(Z0)| ≥ 2|Z0|.

δ(G ) ≥ 2.

u u u u u u u u u u
u uu u u
j j j j j j

#© ≤ #2

2
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Upper Bounds

Conjecture (GR ‘16)

If G is a connected graph of order n and maximum degree 3, then

Z (G ) ≤ 1

3
n + 2.

Z (K3,3) = 4 =
1

3
· 6 + 2

Theorem (GR ‘16)

If G is a connected graph of order n, maximum degree 3, and girth at least
5, then

Z (G ) ≤ n

2
− Ω

(
n

log n

)
.
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Upper Bounds

Proof (sketch):
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Upper Bounds

Proof (sketch): If no such subgraph of order O(log n) exists, then
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Upper Bounds

Theorem (GR ‘16)

If G is a graph, then

Z (G ) ≤
∑

u∈V (G)

dG (u)∑
i=0

(−1)i
∑

I∈(NG (u)
i )

∣∣∣∣∣{u} ∪⋃
v∈I

NG [v ]

∣∣∣∣∣
−1

.

Proof: Let u1, . . . , un be a random linear order of the vertices of G .

Let Z be the set of those vertices ui such that ui is not the unique
neighbor within {ui , . . . , un} of some vertex uj with j < i .

Z is a zero forcing set of G . Z (G ) ≤ E[|Z |]. Inclusion-exclusion. 2
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Upper Bounds

Corollary (GR ‘16)

If G is a r -regular graph of order n and girth at least 5, then

Z (G ) ≤

(
r∏

i=1

(
1− 1

ri + 1

))
n

=

(
1− Hr

r

)
n + O

((
Hr

r

)2
)
n.

Hr = 1 +
1

2
+

1

3
+ · · ·+ 1

r
∼ ln r
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Lower Bounds

Theorem (AIM group)

If G is a graph, then Z (G ) ≥ δ(G ).

Theorem (Kenter and Davila ‘14)

Let G be a graph of minimum degree δ and girth g .

(i) If δ ≥ 3 and g ≥ 4, then Z (G ) ≥ δ + 1.

(ii) If δ ≥ 2 and g ≥ 5, then Z (G ) ≥ 2δ − 2.

Conjecture (Kenter and Davila ‘14)

If δ ≥ 2 and g ≥ 3, then

Z (G ) ≥ (g − 2)(δ − 2) + 2.
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Lower Bounds

For g ≥ 7 and δ ≥ δg , the conjecture follows using

Z (G ) ≥ tw(G ) and

a Moore-type lower bound on tw(G )
(Chandrana and Subramanian ‘05).

Theorem (GR ‘16)

The conjecture holds for g ∈ {4, 5, 6}.
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Hereditary Equality with P(G )

Recall that Z (G ) ≥ P(G ) with equality for forests and cacti

,
which form hereditary classes of graphs.

ZP = {G : Z (H) = P(H) for every induced subgraph H of G}
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Θ(2, 3, 4)

Folklore

A graph is a cactus if and only if it is F-free for

F = {K4} ∪ {Θ(`1, `2, `3) : `1, `2, `3 ∈ N and `2, `3 ≥ 2}.
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Hereditary Equality with P(G )

Theorem (GPRS ‘16)

If G is a graph such that every cycle of G is induced, then the following
statements are equivalent.

(i) G ∈ ZP.
(ii) G is a cactus.

(iii) G is F-free.
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The end

Thank you for your attention!
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